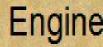


Background

Back

Gasification

- Based on conversion of liquid and/or solid fuel into combustible gas
- Gas can be cleaned and used as a raw material or for energy production
 gas engine, gas turbine, boiler
- Reduction reactions require external energy and/or an oxidant → partial combustion
- Part of the fuel energy available as heat → heat recovery is necessary
- Suits well in small-scale CHP production


Combustion

- Based on conversion of gaseous, liquid and/or solid fuel into flue gas
- Energy utilization is based on heat recovery → hot air, hot water, steam, hot oil, hot organic liquid → tesla turbine, steam engine, steam turbine
- Flue gas needs to be cleaned → large units, in waste combustion may be one third of investment

Pyrolysis		
Feedstock	char + volatiles (endothermic)	
Combustion Reactions	Heterogeneous	
$C + \frac{1}{2}O_2$	CO	-111 MJ/ <u>kmol</u>
$CO + \frac{1}{2}O_2$	CO_2	- 283 MJ/kmol
$H_2 + \frac{1}{2} O_2$	H_2O	- 242 MJ/kmol
Combustion Reactions	Homogeneous	
Volatiles + O ₂	$CO_2 + H_2O$	
Reduction Reactions	Heterogeneous	
$C + CO_2$	2 CO	+172 MJ/kmol (Boudouard)
$C + H_2O$	$CO + H_2$	+131 MJ/kmol (Water-gas)
$C + 2 H_2$	CH ₄	- 75 MJ/kmol (Hydrogenation)

THE STATE OF THE S

$C + O_2 \rightarrow CO_2$	+ 8084 kCals/kg of Carbon
$2C + O_2 \rightarrow 2CO$	+ 2430 kCals/kg of Carbon
$2H_2 + O_2 \rightarrow 2H_2O$	+ 28,922 kCals/kg of Hydrogen
$S + O_2 \rightarrow SO_2$	+ 2,224 kCals/kg of Sulphur

Technology Comparison

Case 1: small scale power production Controls

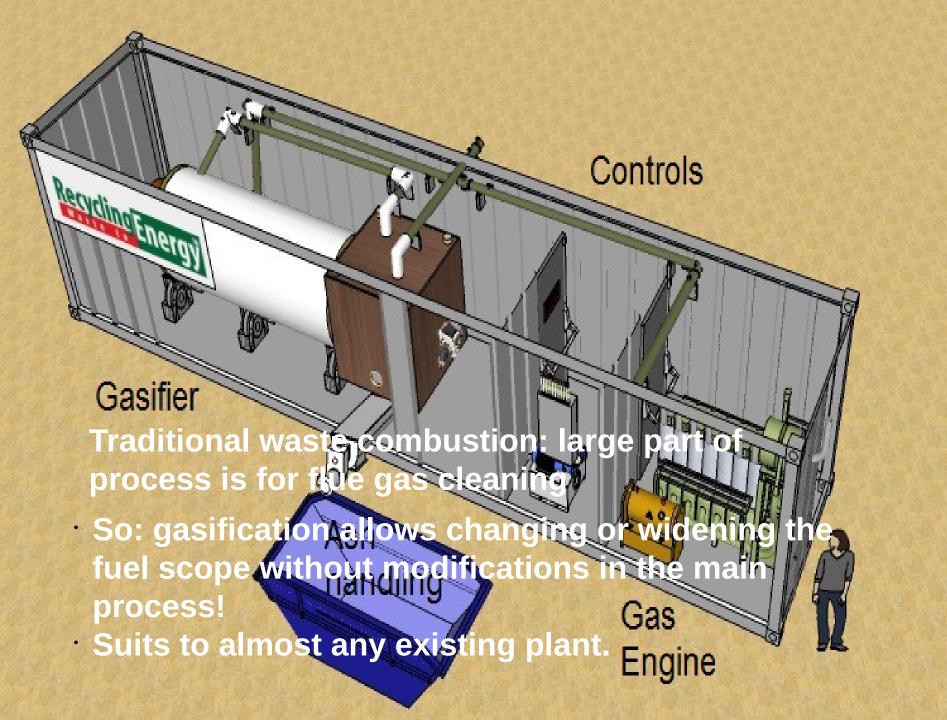
Gasification	Combustion
 Biomass or residue → gas production→ gas cleaning → gas use in a gas engine → heat recovery 	 Biomass or residue → combustion → steam generation in a boiler → steam turbine + flue gas cleaning
Efficiencies:Power up to 35 %Heat up to 55 %	Efficiencies:Power up to 25 %Heat up to 65 %
 Investment for 1 MWe: Drum gasifier 3 MWfuel, 400 k€ Gas cleaning, 100 k€ Gas engine, 500 k€ Boiler, 300 k€ TOTAL: 1 300 k€ 	 Investment for 1 MWe: Grate combustor 4 MWfuel, 500 k€ Boiler, 900 k€ Steam turbine, 800 k€ Gas cleaning, 300 k€ TOTAL: 2 500 k€

Technology Comparison

Case 2: medium scale WTE

Gasification	Combustion
 Waste → gas production→ gas cleaning → gas use in a gas engine → heat recovery 	 Waste → combustion → steam generation in a boiler → steam turbine → flue gas cleaning
Efficiencies:Power up to 40 %Heat up to 45 %	Efficiencies:Power up to 20 %Heat up to 65 %
 Investment for 10 MWe: 6 * Drum gasifier 5 MWfuel, 6 M€ Gas cleaning, 2,5 M€ 5 * 2 MW gas engine, 8 M€ Boiler, 4.5 M€ TOTAL: 21 M€ 	 Investment for 10 MWe: Grate combustor 50 MWfuel, 12 M€ Boiler, 10 M€ Steam turbine, 6 M€ Gas cleaning, 18 M€ TOTAL: 46 M€

NO LIMIT IN POWER PLANT SIZE: AMOUNT PICMODULES CAN BE INCREASED!


Technology Comparison

Case 3: large scale coal combustion, existing power plant Controls

Gasification	Combustion
 Coal → gas production → gas cleaning → gas use in a gas turbine → heat recovery from flue gases Efficiencies: Power up to 50 % Heat up to 40 % 	 Coal → combustion → steam generation in a boiler → steam turbine → flue gas cleaning Efficiencies: Power up to 45 % Heat not usable (condensing operation)

GASIFICATION ALLOWS USING ADDITIONAGEUE COAL PLANTS!

Engine

